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ABSTRACT

Acetylation of the g-amino group of lysine resi-
dues, or Né&-lysine acetylation, is an important
post-translational modification known to occur in
histones, transcription factors and other proteins.
Since 1995, dozens of proteins have been dis-
covered to possess intrinsic lysine acetyltransfer-
ase activity. Although most of these enzymes were
first identified as histone acetyltransferases and
then tested for activities towards other proteins,
acetyltransferases only modifying non-histone
proteins have also been identified. Lysine acetyl-
transferases form different groups, three of which
are Gcn5/PCAF, p300/CBP and MYST proteins.
While members of the former two groups mainly
function as transcriptional co-activators, emerging
evidence suggests that MYST proteins, such as
Esal, Sas2, MOF, TIP60, MOZ and MORF, have
diverse roles in various nuclear processes. Aberrant
lysine acetylation has been implicated in onco-
genesis. The genes for p300, CBP, MOZ and MORF
are rearranged in recurrent leukemia-associated
chromosomal abnormalities. Consistent with their
roles in leukemogenesis, these acetyltransferases
interact with Runx1 (or AML1), one of the most
frequent targets of chromosomal translocations in
leukemia. Therefore, the diverse superfamily of
lysine acetyltransferases executes an acetylation
program that is important for different cellular
processes and perturbation of such a program
may cause the development of cancer and other
diseases.

INTRODUCTION

The question of how protein functions are regulated in vivo has
been and remains a central issue in studies of various
biological processes. Acetylation of the €-amino group of
lysine residues, or N&-lysine acetylation, has recently emerged
as an important covalent post-translational modification for
regulating protein functions (1-7). Lysine acetylation has been

mainly found in eukaryotic cells, but more recently also in
archaea and eubacteria (8-11). This type of modification
ought to be distinguished from acetylation of the o-amino
groups of N-terminal residues, or N%terminal acetylation,
which occurs in many eukaryotic proteins (12). N®-terminal
acetylation mainly occurs in a co-translational manner and is
generally irreversible (12), whereas lysine acetylation is a
reversible post-translational process. The dynamic equilib-
rium of lysine acetylation in vivo is governed by the opposing
actions of acetyltransferases and deacetylases. The very first
direct links of histone acetyltransferase (HAT) and histone
deacetylase to transcriptional co-regulators, made in 1996
(13,14), initiated a gold rush to identify proteins with such
enzymatic activities. It is now clear that there are three major
classes of histone deacetylases (15-19). In comparison,
proteins with HAT activity are more diverse (4,6,20-22).
Some known HATSs also actetylate other proteins (20,23).
Using different protein substrates, several proteins have
recently been found to possess intrinsic lysine acetyltransfer-
ase activity (24-27). Interestingly, at least two of them are
unable to acetylate histones. Since acetyltransferases modify-
ing non-histone proteins have begun to emerge, the generic
term ‘lysine acetyltransferases (LATs)  is used hereafter to
refer to enzymes that are able to acetylate specific lysine
residues within histones and/or other proteins. In what
follows, I will first list various types of proteins modified
by lysine acetylation and present an overview of
different groups of LATs, with a special focus on the MYST
family of acetyltransferases to illustrate how similar catalytic
domains are used for different functional purposes in
various eukaryotic organisms. I will then discuss how
activities of LATs are regulated, what determines their
substrate specificity and how lysine acetylation affects protein
function. Evidence for the involvement of aberrant HATS in
human leukemia will be described at the end, to conclude that
LATs are potential molecular targets for therapeutic inter-
vention of leukemia and other diseases caused by abnormal
lysine acetylation.

LYSINE ACETYLATION IN DIFFERENT TYPES OF
PROTEIN

The occurrence of acetyllysine in histones was first discovered
in the 1960s (28-30). Core histone proteins were found to be
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Table 1. Types of protein known to be modified by lysine acetylation

Type of protein

Functional consequence of acetylation

Core histone
H2A
H2B
H3
H4
Non-histone chromatin protein
HMG14 and HMG17
DNA-binding transcription factor
p53, ELKF, HMGI(Y), TCF, NF-xB,

MyoD, GATAI1, E2F1, HNF4 and ~30 others

Transcriptional co-regulator
ATCR
CIITA
B-Catenin
RB
RIP140
General transcription factor
TFIIE
TFIIF
TFIIB
HAT autoacetylation
PCAF
p300, CBP, MOZ, MOREF, etc.
Chromatin remodeler
Brm
DNA replication factor
MCM3
Chromatid cohesion protein
Cohesin subunits
DNA metabolic enzyme
Flap endonuclease-1
Thymine DNA glycosylase
Werner DNA helicase
Signaling regulator
Smad7
Cytoskeletal protein
o-Tubulin
Nucleocytoplasmic trafficking protein
Importin o
Viral protein
HIV Tat
Adenoviral E1A
Large T antigen
Archaeal chromatin protein
Alba
Bacterial protein
Acetyl-CoA synthetase
CheY

Chromatin loosening/gene activation

Chromatin loosening/gene activation

Chromatin loosening/gene activation

Chromatin loosening/gene activation, histone deposition/nucleosome assembly
Inhibit nucleosome binding

Alter DNA binding, co-regulator interaction, ubiquitination, stability and nuclear localization
Inhibit coactivator association

Nuclear accumulation andubiquitination

c-Myc gene activation

Inhibit phosphorylation and increase MDM?2 association

Block CtBP association

Not determined

Not determined

Stimulate TFIIF association and transcriptional activation

Promote nuclear localization
Not determined

Block transcriptional activation and growth inhibition
Inhibit DNA replication

Not determined

Inhibit DNA binding and nuclease activity

Block interaction with the repair endonuclease APE
Augment translocation into nuclear foci

Prevent ubiquitination and proteasomal degradation

Increase cell motility

Not determined

Regulate RNA binding, co-regulator interaction and transcriptional activation
Inhibit CtBP association and stimulate nuclear accumulation
Stimulate DNA replication

Inhibit oligomerization and DNA binding

Inhibit enzymatic activity
Regulate the chemotaxis response

acetylated at the €-amino nitrogen of specific lysine residues
located in the N-terminal tails (reviewed in 31). Importantly,
histone acetylation appeared to be associated with active
chromatin (28). In 1979, lysine acetylation of high mobility
group (HMG) proteins was observed (32). In 1987, Lys40 of
o-tubulin from Chlamydomonas was identified as the
acetylation site (33). A decade later, in 1997, the tumor
suppressor protein pS3 was discovered to be acetylated at
specific lysine residues in its C-terminal regulatory domain
(34). Together with the finding that HATs acetylate the
general transcription factors TFIIE and TFIIF in vitro (35), the
unexpected discovery of p53 acetylation revealed that HATSs
are also able to acetylate non-histone proteins, thereby
unleashing numerous studies aimed at assessing lysine
acetylation in various proteins. It is well recognized now
that this type of modification occurs much more widely than

anticipated several years ago. As listed in Table 1, over 30
DNA-binding transcription factors have been found to be Né-
acetylated (20,23,36). At least five transcriptional co-regula-
tors are known to be similarly modified (37-41). Reminiscent
of autophosphorylation found with protein kinases, several
HATSs are autoacetylated (42-45). Autoacetylation of PCAF
(p300/CBP-associated factor) is important for nuclear local-
ization (46) and acetylation of the general transcription factor
TFIIB by itself promotes TFIIF association and transcriptional
activation (26). In addition, the chromatin remodeler Brm is
acetylated at a lysine residue (47). Although most known N&-
acetylated proteins are histones and transcriptional regulators
(Table 1), this modification also occurs in other cellular
proteins, including MCM3 (minichromosome maintenance 3)
(24), DNA metabolic enzymes (48-50), the signaling regula-
tor Smad7 (51) and a-tubulin (33). Just as in cellular proteins,



Table 2. Classification of known lysine acetyltransferases
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Family LAT Organism Substrate Stoichiometric complex  Established roles/function
Hat1 Hat1 S.cerevisiae to mammals  H4 Hat B Histone deposition, chromatin
assembly and gene silencing
Gcen5/PCAF Gcen5 S.cerevisiae H4/H2B SAGA, ADA, HAT-A2, Transcriptional co-activator
SLIK/SALSA
PCAF Mammals H3/H4, TFs, E1A, TAT PCAF Transcriptional co-activator
GCNS5L Worms to mammals H3/H4, TFs? STAGA, TFTC Transcriptional co-activator
p300/CBP CBP C.elegans to mammals Histones, TFs, E1A Transcriptional co-activator
p300 Mammals Histones, TFs, E1A, TAT Transcriptional co-activator and
E4 ubiquitin ligase for p53
MYST Sas2 S.cerevisiae H4 K16° SAS Gene silencing
Sas3 S.cerevisiae H3 NuA3 Transcriptional elongation
Esal S.cerevisiae H4/H2A NuAd4, piccolo NuA4 Transcriptional coactivator and
cell cycle control
Mof Drosophila H4 K16 MSL Gene dosage compensation
Chameau Drosophila PcG-dependent gene silencing
Enok Drosophila Neuroblast proliferation
TIP60 Mammals H3/H4, androgen receptor ~ TIP60 Transcriptional co-regulator, DNA
repair and apoptosis
MOF Mammals H4 MAF2 Transcriptional co-activator
HBO1 Mammals H3/H4> DNA replication, transcriptional
co-repressor
MOZ Mammals H3/H4 Transcriptional co-activator
MORF Mammals H3/H4 Transcriptional co-activator
pl160 SRC-1 Mammals H3/H4 Transcriptional co-activator
ACTR Mammals H3/H4 Transcriptional co-activator
CIITA CIITA Mammals H4 Transcriptional co-activator
ATF2 ATF2 Mammals H4/H2B Transcriptional activator
TAF;250 TAF;230 Drosophila H3/H4 TFIID Transcription initiation
TAF;250 Mammals H3/H4 TFIID Transcription initiation, kinase and
ubiquitin ligase
TFIIC TFIIIC subunits  S.cerevisiae to mammals  H3/H4 Transcription initiation
Nutl Nutl S.cerevisiae H3/H4 Mediator Transcription initiation
Elp3 Elp3 S.cerevisiae to mammals  Histones Elongator Transcription elongation, lysine
demethylase?
CDY CDY Humans H4
CDYL Mammals H4 Histone-to-protamine transition
during spermatogenesis
Hpa2 Hpa2 S.cerevisiae H3/H4 Unknown
Hpa3 S.cerevisiae Unknown
TFIIB TFIIB S.cerevisiae to mammals  TFIIB Transcription initiation
MCM3AP MCM3AP Mammals MCM3 DNA replication initiation
Ecol Ecol Mammals Cohesin subunits Sister chromatid cohesion
ARDI1 ARDI1 Mammals HIFla pVHL association, ubiquitination

and degradation

4TF, transcription factor.

bRecombinant enzymes have weak activity, but their respective complexes are much more active.

Ne-acetylation has been found in viral proteins, including the
HIV TAR RNA-binding protein Tat, adenoviral oncoprotein
ElA and polyomavirus large T antigen (52-55). Moreover,
lysine acetylation is not just unique to eukaryotic and viral
proteins. The archaeal architectural protein Alba is N&-
acetylated and this modification blocks oligomerization and
DNA binding (8,9). Acetylation of Lys609, a catalytic residue
of acetyl-CoA synthetase from the enterobacterium
Salmonella enterica, inhibits the enzymatic activity in vivo
(10,11). This residue is invariant among a family of AMP-
forming enzymes from prokaryotes and eukaryotes, so
acetylation may modulate the function of these enzymes
(10,11). More amazingly, acetylation of Lys92 dramatically
up-regulates the function of Escherichia coli chemotaxis
regulator CheY (56,57). Therefore, lysine acetylation has
emerged as a general post-translational modification that
regulates functions of various cellular and viral proteins.

DIFFERENT TYPES OF LYSINE
ACETYLTRANSFERASES

In 1995, yeast HAT1 (histone acetyltransferase 1) (Table 2)
was identified as the first HAT (58). Although HAT1 was
considered to be mainly localized in the cytoplasm to acetylate
nascent histones for deposition, recent studies indicate that
this acetyltransferase also exists in the nucleus to regulate
gene silencing (59). The importance of HATs in gene
regulation began to be widely considered in 1996 when
HAT activity was shown to be intrinsic to several known
transcriptional co-activators such as Gcn5 (general control
non-derepressible 5) (13), PCAF (60), p300 (E1A-associated
300 kDa protein) (43), CBP (CREB-binding protein) (43,44)
and TAF;250 (TBP-associated factor of 250 kDa) (61).
Subsequently, additional proteins were shown to possess HAT
activity (Table 2). As listed in Table 2, these proteins include
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Figure 1. Schematic illustration of the Gen5/PCAF (A) and p300/CBP (B) families of HATSs. Br, bromodomain; Nr, nuclear receptor-interacting box; CH,
cysteine/histidine-rich module; KIX, phospho-CREB interacting module; Q, glutamine-rich domain. Numbers on the right correspond to total residues that
each protein possesses. In A.thaliana there are five p300/CBP acetyltransferase-related proteins (PCAT1-5), one of which (PCAT?2) is depicted here.

the nuclear receptor co-activators SRC-1 (steroid receptor
coactivator 1) and ACTR (activator of retinoid receptor, also
known as AIB1 for amplified in breast cancer 1) (62,63), the
transcriptional co-activator CIITA (major histocompatibility
class II activator) (64), the DNA-binding transcription factor
ATF2 (65), the transcriptional mediator Nutl (66), the
transcription initiation factor TFIIIC (67), the transcription
elongation factor Elp3 (68), the yeast protein Hpa2 (69), CDY
(chromodomain Y) and its homolog CDYL (CDY-like) (70)
and the MYST family of proteins (20,22,71). p300, CBP and
PCAF also acetylate transcription factors and other proteins
(20,23). Some HATs display autoacetylating activity (42-45).
TFIIB acetylates itself, but does not possess any detectable
HAT activity (26,69). MCM3AP (MCM3 acetylating protein),
Ecol (establishment of cohesion 1) and ARDI1 (a known N*-
acetyltransferase) are three other LATs that were not identified
first as HATs (24,25,27). Quite interestingly, acetyl-CoA
synthetase is responsible for the acetylation of CheY in E.coli
(56,57).

According to sequence similarity, known LATSs can be
organized into different groups (Table 2). As one major group
of nuclear HATSs, the GcnS/PCAF family is composed of
GcenS, PCAF and related proteins. As illustrated in Figure 1A,
yeast Gen5 possesses a HAT domain and a bromodomain and
is highly homologous to the C-terminal halves of human
PCAF and GCNSL (mammalian GCN5 long form) (60,72—
75). Like Drosophila GCN5, mammalian PCAF and GCNSL
possess PCAF-specific N-terminal domains (Fig. 1A) (74). A
recent study indicates that GCNS5 from the worm Schistosoma
mansoni has a similar domain organization (76). Numerous
studies indicate that these HATs function as histone-

acetylating transcriptional co-activators (4,6,21). Besides
histones, PCAF also acetylates non-histone proteins (20,23).

The p300/CBP family is another major group of nuclear
HATS that has been extensively characterized (Fig. 1B) (77—
79). Like PCAF, both p300 and CBP are transcriptional co-
activators able to acetylate histones and non-histone proteins.
Reminiscent of PCAF and GCNS5L, p300 and CBP form a pair
of homologous HATSs in mammals (Fig. 1). Drosophila CBP is
larger, but possesses a similar domain organization (Fig. 1B).
As in Drosophila, there is also only one p300/CBP ortholog in
Caenorhabditis elegans (78). In Arabidopsis thaliana there
are five proteins displaying sequence similarity to the HAT
domains of p300 and CBP (Fig. 1B) (80,81); functions of these
novel proteins remain to be determined.

The MYST family of proteins constitutes a third major
group of nuclear HATs (Table 2 and Fig. 2). Compared with
the GenS5/PCAF and p300/CBP groups, the MYST family is
larger, more diverse and not so well characterized. Despite
their similar HAT domains, MYST proteins play different
roles in various cellular processes. In light of their unique
structure and function, these acetyltransferases will be
discussed in detail in the next section.

In addition to these three major groups of HATSs, more than
a dozen other proteins have been shown to possess
acetyltransferase activity (Table 2). Like members of the
GenS/PCAF  family, HATI1, Nutl, Elp3, Hpa2/Hpa3,
MCMB3AP, Ecol and ARD1 share three or four similar motifs
with various N-acetyltransferases and thus belong to the Gen5-
related N-acetyltransferase (GNAT) superfamily (4,6,24,25,
27,82). One of the shared motifs is the classical acetyl-CoA-
binding site, which is also present in the MYST family
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Figure 2. Domain organization of MYST proteins from S.cerevisiae (A), Drosophila (B), human (C) and A.thaliana (D). Chromo, chromodomain; Ser,
serine-rich domain; CH, cysteine/histidine-rich motif; H15, linker histones H1- and H5-like domain; NEMM, N-terminal part of Enok, MOZ or MORF; PHD,
PHD zinc finger; ED, glutamate/aspartate-rich region; SM, serine/methionine-rich domain. The SM domain of MOZ has an insertion of a proline/glutamine-
stretch (labeled P). Bars below the N-terminal and SM domains of MORF denote its transcriptional repression and activation domains, respectively. Numbers

on the right correspond to the total residues that each protein has.

members and ATF2 (6,65,83,84). In contrast, such a motif is
absent in other known LATS, so there may be different acetyl-
CoA binding modes. Indeed, CDY and CDYL do not have the
classical acetyl CoA-binding motif, but display some
sequence similarity to several CoA-utilizing enzymes (70).
Most HATSs exist as stoichiometric multisubunit complexes
in vivo (Table 2). The complexes are typically more active
than their respective catalytic subunits and display distinct
substrate specificities (85-88), suggesting that associated
subunits regulate the activities of the respective catalytic
subunits. In addition, non-catalytic subunits are also involved
in recruiting substrates for targeted action to ensure the
specificity. Amazingly, one HAT can be the catalytic subunit
of multiple complexes. As listed in Table 2, GCNS5L forms at
least two distinct multisubunit complexes (89-91), and yeast

GcenS is the catalytic subunit of four complexes (85,92-96;
reviewed in 6). Notably, recent studies indicate that Ubp8, a
deubiquitinating enzyme present in two GcnS complexes,
controls the deubiquitination of histone H2B and methylation
of histone H3 (97-99). Therefore, the diversity of multisubunit
complexes adds another level of complexity to the already
diverse superfamily of LATs.

Some known LATSs display weak activity towards sub-
strates tested, so an interesting question is whether low levels
of activity observed in vitro have any biological significance.
One possibility is that the weak activity is not intrinsic, but
rather due to an associated HAT. For example, the HAT
activity observed with BRCA2 appears to be from associated
PCAF (100). It is noteworthy that a weak or null activity
observed with a potential LAT in vitro could also be a ‘false
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negative’. A given substrate used may not be the real one since
many proteins are acetylated. Moreover, HATs form multi-
subunit complexes with different activities and substrate
specificities (85—87), so activity data obtained with recombin-
ant catalytic subunits could be potentially misleading.
Activities of LATs are dynamically regulated by different
mechanisms (see below), so the situation could be even more
complicated in vivo. For example, neither Sas2 nor its
complex acetylates nucleosomal histone H4 in vitro (101),
but Sas2 appears to do so in vivo (102,103). Therefore,
different experimental approaches are needed to address
whether a potential LAT with weak activity in vitro is an
authentic one in vivo.

SIMILAR ACETYLTRANSFERASE DOMAINS BUT
DIVERSE FUNCTIONS: THE MYST FAMILY OF
PROTEINS

Different MYST proteins

The acronym MYST is from its four founding members:
human MOZ (monocytic leukemia zinc finger protein) (83),
yeast Ybf2 (renamed Sas3, for something about silencing 3)
(84,104), yeast Sas2 (84) and mammalian TIP60 (HIV Tat-
interacting 60 kDa protein) (105-107). As illustrated in
Figure 2A, a third MYST protein in Saccharomyces cerevisiae
is Esal (essential Sas2-related acetyltransferase 1) (108,109).
In Drosophila (Fig. 2B), there are five members, including
Mof (male-absent on the first) (110,111), Enok (Enoki
mushroom) (112), Chameau (camel in French) (113) and
two uncharacterized MYST proteins (CG6121 and CG1894).
In humans (Fig. 2C), besides MOZ and TIP60, there are
hMOF (ortholog of Drosophila Mof), HBO1 (HAT bound to
ORCl1, a Chameau ortholog) (114) and MORF (MOZ-related
factor) (45). Among these, TIP60 is most similar to
Drosophila CG6121 and yeast Esal (Fig. 2A—-C). There are
two uncharacterized MYST proteins in A.thaliana (Fig. 2D)
(81). Similar proteins also exist in Schizosaccharomyces
pombe and parasitic protozoa (22). Therefore, this family
appears to have members in all eukaryotes.

Domain organization of MYST proteins

Members of this family possess highly homologous ~370
residue MYST domains (identity, 36—77%; similarity, 54—
84%) (Fig. 2). Structural analysis has revealed that the MYST
domain of Esal uses an acetyl-cysteine intermediate in the
acetylation reaction, so the catalytic mechanism involved is
different from that shared by members of the GNAT
superfamily of acetyltransferases (115). C,HC fingers are
present in all MYST domains except for that of Esal (Fig. 2).
Despite the absence of zinc and three of the four chelating
residues, the corresponding region of Esal forms a classical
TFIIIA-type zinc finger fold (116). The C,HC fingers of Sas3,
Mof and MOZ are known to be essential for HAT activity
(104,117,118). A mutation in the C,HC finger of Drosophila
Enok affects brain development (112). The C,HC finger of
Mof binds to nucleosomes in vitro (117), whereas the CoHC
finger of TIP60 is essential for interaction with the trans-
location E26 transforming-specific (ETS) leukemia protein
TEL (119). Therefore, C,HC zinc fingers are important in vitro
and in vivo.

Besides MYST domains, this family of proteins contains
other structural modules (Fig. 2). One such module is the
chromodomain (120), conserved among Esal, Mof and TIP60
(Fig. 2A—C). The chromodomain of Mof binds to roX (RNA
on the X) RNAs and targets the complex to the male fly X
chromosome for gene dosage compensation (121). In com-
parison, the chromodomain of HP1 (heterochromatin protein
1) recognizes Lys9-methylated histone H3 (122,123).
Therefore, it will be interesting to determine what roles the
chromodomains of Esal and TIP60 may have. The PHD (plant
homeodomain-linked) zinc finger is another recognizable
module (Fig. 2). Two PHD fingers are found in the N-terminal
parts of Enok, MOZ and MORF (45,83,112,124). The PHD
domains of MOZ and MORF are much more similar to each
other than to those of Enok and display high sequence
homology to Neuro-D4 and Requiem, two potential transcrip-
tion factors that do not have MYST domains (83). PHD fingers
are also known as LAP (leukemia-associated protein) domains
and have been found in many chromatin regulators (125,126).
Mutations in PHD fingers of several chromatin regulators
contribute to a variety of human diseases (127,128). Atypical
PHD zinc fingers with similarity to RING fingers have been
shown to function as E3 ubiquitin ligases (129), but it is
unclear whether this is a common functional feature of all
PHD fingers (130). Interestingly, PHD fingers from several
chromatin regulators bind to phosphoinositides and are thus
implicated in nuclear lipid signaling (131). The PHD zinc
fingers of MOZ display phosphoinositide-binding activity,
raising the interesting possibility that phosphoinositides act
through PHD zinc fingers and regulate the functions of Enok,
MOZ and MOREF.

Besides PHD fingers, MOZ and MOREF share their extreme
N-terminal regions with Enok (Fig. 2B and C), referred to as
NEMM (N-terminal region in Enok, MOZ or MORF)
domains. The NEMM domains of MOZ and MORF, but not
that of Enok, display some sequence similarity to the globular
domains of linker histones H1 and HS. The functional
significance of this similarity remains to be determined.
These H1- and H5-like regions, known as H15 domains, may
mediate self-association and interaction with core histones and
nucleosomes since the globular domains of histones H1 and
HS5 are known to have similar activities (132,133). In addition,
Enok possesses an uncharacterized neurofilament protein-like
domain that is missing in other MYST proteins (Fig. 2B)
(112). At the C-terminal ends of MOZ and MORF (Fig. 2C)
are serine- and methionine-rich regions, which are known as
SM domains and possess potent transcriptional activation
potential (45,134). Therefore, MYST proteins have diverse
domain organizations.

Different multisubunit complexes of MYST proteins

Consistent with their diverse domain organizations, MYST
proteins exist as distinct multiprotein complexes in vivo. Yeast
Esal, Sas2 and Sas3 are the catalytic subunits of different
multiprotein complexes (Table 2). The Esal complex NuA4
contains 12 subunits, including Tral (TRRAP homolog 1),
actin, Arp4 (actin-related protein 4), Epll (Enhancer of
Polycomb-like protein 1), Yng2 (homolog of mammalian
INGI, for inhibitor of growth 1) and Yaf9 (homolog of the
leukemogenic human protein AF9) (94,135,136). Among
these subunits, Esal, Epll and Yng2 form a highly active but



much smaller core complex, termed Piccolo NuA4 (88). Sas2
and Sas3 are the catalytic subunits of two trimeric complexes:
Sas2 associates with Sas4 and Sas5 (AF9 homolog), whereas
Sas3 interacts with Taf30 (AF9 homolog) and Yngl (INGI
homolog) (137-139). Since Esal and Sas3 associate with
homologs of mammalian INGI, phosphoinositides may bind
to the complexes and regulate their functions. In Drosophila,
one MYST complex has been characterized (140). Mof in
male flies is part of a dosage compensation complex that
contains Msll (male-specific lethal 1), Msl2, Msl3, Mle
(maleless, homolog of mammalian RNA helicase A) and two
non-coding RNA molecules, roX1 and roX2. Notably, this is
the only HAT complex known to contain RNA. The
chromodomains of Mof and Msl3 are able to mediate RNA
binding (121). In mammals, the TIP60 complex has been
purified and characterized (141,142). It shares similar subunits
with the Esal complex, including TRRAP (transformation/
transcription domain-associated protein), actin, BAF53 (actin-
related protein) and EPC (Enhancer of Polycomb-like
protein). However, the TIP60 complex also possesses unique
subunits such as p400 (SWI2/SNF2-related ATPase), two
RuvB-like proteins and DMAP1 (DNMT1-associated
protein 1) (141,142). Originally identified as an essential
cofactor for the oncogenic transcription factors c-Myc and
E2F (143), TRRAP is an ATM/PI-3 kinase-like protein shared
by the PCAF (144), GCN5L (89-91), TIP60 (141) and p400
complexes (145) (Table 2). As the yeast homolog of TRRAP,
Tral is a common subunit of the Gen5 and Esal complexes
(92-96). In contrast, the Sas2, Sas3 and Mof complexes do not
possess proteins similar to TRRAP. It is expected that human
MOF does not associate with TRRAP, but it remains unclear
whether other MYST proteins, such as HBO1, MOZ and
MOREF, interact with TRRAP.

Diverse functions of MYST proteins

As suggested by their unique domain organizations and
different complex compositions, MYST proteins are involved
in regulating various biological processes. In agreement with
the fact that the NuA4 subunit Yng2 is homologous to the
candidate tumor suppressor ING1 (146,147), Esal is import-
ant for DNA repair and cell cycle progression (108,109,148).
The Esal complex has also been linked to epigenetic control,
gene regulation and cellular response to spindle stress
(135,136). In support of its role in yeast gene silencing (84),
Sas2 opposes the action of the deacetylase Sir2 to establish
the boundary between euchromatin and heterochromatin
(102,103). Sas3 was originally identified as a regulator of
gene silencing (84), whereas its complex was recently shown
to be involved in regulating transcriptional elongation (137).
Drosophila Chameau is important for heterochromatin-medi-
ated gene silencing and Mof is a major player in gene dosage
compensation in male flies (110,112). As for mammalian
MYST proteins, TIP60 plays an important role in apoptosis
and DNA repair (141).

Different lines of evidence suggest that MYST proteins are
also targeted to specific promoters to regulate transcription.
Through interacting with DNA-binding transcription factors,
yeast Esal is recruited to regulate the expression of ribosomal
proteins (149). The tumor suppressor p53 interacts with ING
proteins and its ability to activate transcription in yeast is
modulated by Yngl and Yng2, two ING homologs that are

Nucleic Acids Research, 2004, Vol. 32, No.3 965

subunits of the Sas3 and Esal complexes, respectively
(147,150). TIP60 not only functions as a transcriptional co-
repressor for TEL (119) and STAT3 (151), but also as a
coactivator for androgen receptor (152,153), NF-xB (154) and
c-Myc (155). Through a unique NPxY motif within its MYST
domain, TIP60 interacts with the WW domain of Fe65 and
potentiates transcription mediated by the APP (amyloid-3
precursor protein) cytoplasmic domain (154,156-158).
Therefore, TIP60 regulates transcription in a context-
dependent manner. Originally identified as a protein interact-
ing with ORCI, an ORC (replication origin recognition
complex) subunit (114), HBO1 has recently been found to
function as a transcriptional co-repressor for androgen
receptor (159). Human MOF is part of a complex implicated
in activating the B-myb promoter (160). MOZ and MORF
possess transcriptional repression and activation domains
(45,134,161), suggesting that these two HATs are potential
transcriptional co-regulators. Indeed, MORF is present in a
transcriptional co-activator complex associated with the
nuclear receptor PPARo. (162). Both MOZ and MORF
physically and functionally interact with Runxl and Runx2
(161,163,164), two Runt domain transcription factors import-
ant for cell growth and differentiation in different tissues
(165-168). In agreement with this, down-regulated expression
of mouse MORF, known as Querkopf (squarehead in
German), leads to defects in osteogenesis and neurogenesis
(169). Therefore, compared with members of the GenS/PCAF
and p300/CBP families, MYST proteins are much more
diverse in domain organization, multiprotein complex
formation and biological function.

REGULATION OF LYSINE ACETYLTRANSFERASES

With more information available on the structure and function
of different LATs, the regulation of their enzymatic activities
has become an important issue in the past few years. Emerging
data suggest that multiple mechanisms are involved. First, as
an essential cofactor for different acetyltransferases, acetyl-
CoA also stabilizes GCNS5 and PCAF (42). Second, as
described above, formation of stoichiometric multisubunit
complexes modulates the specific activities and substrate
specificities of different LATs. Third, the enzymatic activities
of PCAF, p300 and CBP are regulated by interaction with
transcription factors such as p/CIP (170), Twist (171), vIRF
(172), Zta (173), HOX proteins (174), PU.1 (175) and the early
B-cell factor (176); the ubiquitin ligase MDM2 (177-179); the
protein kinase RSK2 (180); and viral proteins like E1A
(170,171,181,182), E1B (183), T antigen (184), E7 (185) and
Tat (186). Fourth, LATs are subject to covalent modifications
such as phosphorylation (65,187), acetylation (37,46), ubiqui-
tination (188-190) and sumoylation (191). Fifth, LATs are
degradated by caspases, calpains and ubiquitin-dependent
proteasomes (188-190,192). Sixth, subcellular compartmen-
talization is an important regulatory mechanism for HATs. For
example, HAT1 binds to 14-3-3 proteins (193) and TIP60 is
sequestered to the cytoplasm in a signal-dependent manner
(154,156,158,194). Finally, while p300, CBP, MOZ and
MOREF possess PHD fingers (Figs 1 and 2), yeast Esal and
Sas3 associate with PHD finger-containing subunits (6,22).
PHD fingers are implicated in phosphoinositide binding and
may thus provide structural modules for integrating nuclear
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through the help of an adaptor protein (C). After the reaction, the enzyme may remain associated with the substrate. (D) In the ‘targeted action’ model, the
enzyme is recruited to a polymer substrate through an adaptor protein. The adaptor recognizes a specific monomer of the polymer and thus determines the
substrate specificity. (E) The ‘relay’ model applies to LATs that possess acetyllysine-binding domains. One acetyltransferase molecule (El) acetylates one
monomer of a polymer substrate and the acetylated monomer then recruits (Re) a second acetyltransferase molecule (E2) via its acetyllysine-binding domain.
Acetylation by E2 in turn recruits E1 and leads to the expansion of an acetylation zone. If El is the same as E2, the acetylation process is self-perpetuating.
(F) Production of HIV TAR RNA at the promoter leads to the recruitment of Tat. Upon acetylation at Lys50 by p300, Tat interacts with the bromodomain of

PCAF, which is then targeted to acetylate nearby nucleosomes.

lipid signals (131), so activities of these acetyltransferases
may be regulated by nuclear signaling events.

HOW DO LYSINE ACETYLTRANSFERASES
RECOGNIZE THEIR SUBSTRATES?

In addition to the regulatory mechanisms just described,
substrate recognition is another point for controlling acetyl-
ation. A relevant question is how the specificity is achieved.
The classical ‘hit-and-run’ model can be used to depict how
HATSs recognize free histone substrates (Fig. 3A). For
example, HAT1 acetylates newly synthesized histones in
such a mode (195,196). HATs also adopt ‘attract-and-hit’
mechanisms. To bring substrates into their physical proximity,
HATs and other LATs may either bind directly to their
substrates (Fig. 3B) or interact with their substrates through
adaptor proteins (Fig. 3C). Since physical proximity increases
the local substrate concentration, ‘attract-and-hit’ modes are
more efficient than ‘hit-and-run’ ones. For example, when the
WD40-repeat histone-binding protein HAT?2 is present, HAT1
is 10 times more active (197). With polymer substrates such as
chromatin, region-specific acetylation is sometimes necessary

(Fig. 3D). To specifically modify chromatin, HATs are often
recruited to carry out targeted acetylation, which is reminis-
cent of the indirect ‘attract-and-hit’ mechanism (Fig. 3C). In
this scenario, subunits associated with a HAT may modulate
the targeting specificity. As stated above, incorporation of one
HAT into different complexes adds another level of diversity
for substrate targeting. Like chromatin, microtubules are
polymers, so a tubulin acetyltransferase may also need to be
targeted. While the DNA sequence marks the position of a
given nucleosome within a chromatin array and thus dictates
region-specific recruitment of HATs for acetylation, micro-
tubules do not have such a marking system. Region-specific
tubulin acetylation on a microtubule may be achieved during
polymerization. As illustrated in Figure 1, most members of
the Gen5/PCAF and p300/CBP families contain bromo-
domains, so these acetyltransferases are able to participate in
‘relay’ reactions (Fig. 3E), with one enzyme executing the
initial acetylation in a polymer substrate to create a binding
site for the bromodomain of another enzyme, which then
initiates another round of acetylation to trigger a cascade of
reactions. This may be one means to execute chromatin
domain-, chromosome- and genome-wide acetylation (198). A



slightly different scenario is that with acetylating activities
coupled to acetyllysine-binding bromodomains, two LATSs
cooperate with each other to carry out sequential acetylation of
different substrates. Such a mode of action has been elegantly
demonstrated for p300 and PCAF in their sequential
acetylation of Tat and histones (Fig. 3F) (199,200).
Therefore, LATs utilize different means to cope with various
types of substrates.

HOW DOES LYSINE ACETYLATION EXERT ITS
EFFECTS?

Once a lysine residue is acetylated, a mechanistic question is
how such a modification may affect protein function. It
appears that both ‘loss-of-function’ and ‘gain-of-function’
mechanisms are involved. Regarding the former, acetylation
of the e-amino group of a lysine residue neutralizes the
positive charge, so the modification may affect interaction of
the lysine residue with DNA, RNA and proteins. Such a
mechanism may operate with chromatin since the DNA
backbone is negatively charged. Indeed, histone acetylation
has been shown to affect the nucleosomal structure and the
stability of nucleosomal arrays (201-204). Alternatively,
acetylation may render the €-amino group unable to form
hydrogen bonds. For example, Lys11 of Alba is involved in
forming a hydrogen bond important for oligomerization, so
acetylation of this residue inhibits oligomerization (8,9).
Acetyl-CoA synthetase from S.enterica provides another
unique example of a ‘loss-of-function’ effect (10). Lys609
of this enzyme is part of the catalytic center, so acetylation of
this residue inhibits the enzymatic activity.

In eukaryotic cells, the e-amino group of a lysine residue is
also subject to methylation and modification by ubiquitin and
ubiquitin-like proteins such as NEDD8 and SUMO (Fig. 4).
Different modifications are mutually exclusive, thus leading to
their potential competition. It has recently been shown for
SREBP and Smad7 that acetylation directly competes with
ubiquitination for the same lysine residues to increase protein
stability (51,205). Acetylation and methylation of histone H3
at Lys9 have completely opposite functional consequences,
with the former associated with active chromatin and the latter
linked to heterochromatin or inactive chromatin (2,5). Since
acetylation blocks methylation, histone deacetylases are
needed to remove the acetyl group from Lys9 and clear the
way for subsequent methylation and thus the establishment of
inactive chromatin (206,207).

As for ‘gain-of-function’ mechanisms, the addition of an
acetyl group to a lysine residue creates a new surface for
protein association. Reminiscent of domains that recognize
phosphoproteins (208,209), bromodomains function as struc-
tural modules specific for acetyllysine-containing motifs
(Fig. 4). It has been demonstrated that several chromatin
regulators use bromodomains to recognize acetyllysine (210-
216). Bromodomains are found in many proteins and sequence
variations may dictate their binding specificity (217). Some
proteins contain multiple bromodomains, which may co-
operate with each other to increase the affinity for binding
partners with multiple acetylated lysine residues (211).
Acetylation is also known to stimulate the association with
proteins that do not contain bromodomains (27,218). Different
types of structural modules have been identified for
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covalent modifications, including ubiquitination, sumoylation, methylation
and acetylation (Ac). Acetylation neutralizes the positive charge of the

lysine side chain, affects its ability to form hydrogen bonds and creates a
new binding surface for protein modules such as the bromodomain.

phosphotyrosine (209,219), so an interesting question to be
addressed is whether there are additional acetyllysine-
recognizing modules (Fig. 4).

ROLES OF LYSINE ACETYLTRANSFERASES IN
LEUKEMIA AND OTHER MALIGNANCIES

Consistent with the essential roles of LATs in different
biological processes, molecular and genetic studies have
revealed that these enzymes are also important players in
human pathology. Among others, the following lines of
evidence strongly suggest that several HATs are directly
linked to oncogenesis: (i) the viral oncoproteins such as E1A
and large T antigen target p300 and CBP (77,78,220); (ii) E1A
also interacts with PCAF and TRRAP, a subunit of multiple
HAT complexes (6,143,220,221); (iii) the proto-oncoprotein
SYT targets p300 (222); (iv) p300, CBP and PCAF associate
with and modify various transcription factors, such as p53, Rb,
E2F, H1Fo and E2A, that play key roles in controlling
different cellular programs (21,77-79); (v) oncogenic tran-
scription factors c-Myc and E2F bind to TRRAP (143); (vi) the
tumor suppressor p53 also binds to ING proteins, homologs of
which have been found in HAT complexes (147); (vii) MOZ
and MOREF interact with Runxl (161,163,164), the most
frequent target of leukemia-associated chromosomal trans-
locations (166,168); (viii) TIP60 associates with the androgen
receptor and has been implicated in the development of
prostate cancer (152,153,223); (ix) TIP60 is involved in
regulating apoptosis and its yeast homolog Esal is essential
for cell cycle progression (108,109,141).

Among known HATs (Table 2), p300 and CBP have been
considered as tumor suppressors (77-79). Consistent with this
notion, monoallelic mutation of the CBP locus is the genetic
basis for Rubinstein—Taybi syndrome and patients with this
syndrome exhibit an increased risk of developing malignant
tumors (224). Biallelic mutations of the p300 locus have been
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identified in human cancers of epithelial origin (225,226) and
exogenous expression of p300 is able to suppress the growth of
human carcinoma cells in vitro (227). Moreover, p300 and
CBP play distinct but essential roles in hematopoiesis, and
mice with inactivated alleles of the p300 and CBP loci develop
hematological malignancies (228-231).

Studies of chromosomal abnormalities in leukemia patients
have provided additional support for the direct involvement of
HATSs in human cancer. The p300 and CBP genes are located
on chromosomes 16p13 and 22q13, respectively, and have
been shown to be rearranged in chromosomal translocations
associated with leukemia or treatment-related myelodysplastic
syndrome (Fig. 5SA). Known fusion partners are MOZ, MORF
and MLL (mixed lineage leukemia) (Fig. 5). The MLL gene,
located at 11923, is fused to the p300 and CBP genes in
the translocations t(11;22)q23;q13) and t(11;16)(q23;p13),
respectively (Fig. SA and C) (232-238). These translocations
lead to the production of different MLL-p300 and MLL-CBP
fusion proteins, in which the bromodomain, HAT domain and
Q region of p300 or CBP are linked to the N-terminal part of
MLL. The MOZ gene, located at 8pl1, is fused to that of CBP
in two t(8;16)(p11;p13) translocations (Fig. 5B), which gives

rise to MOZ-CBP proteins containing the N- and C-terminal
parts of MOZ and CBP, respectively (83,239). In two
t(8;22)(p11;q13) translocations, the MOZ gene is fused to
the p300 gene, generating MOZ-p300 fusion proteins
(240,241). In the t(8;16) and t(8;22) translocations, the reverse
transcripts expressing CBP-MOZ or p300-MOZ are not
always produced, suggesting that the MOZ-CBP and MOZ-
p300 fusion proteins are responsible for the leukemogenesis.
These fusion proteins possess the NEMM, PHD and MYST
domains of MOZ, as well as the CH1, KIX, bromodomain,
HAT domain and Q region of CBP or p300 (Fig. 5A and B).
Notably, the SM domain of MOZ is missing from these fusion
proteins.

Besides p300 and CBP, other partners are also involved in
the fusion with the MOZ gene. In two slightly different
inv(8)(p11q13) chromosomal inversions (Fig. 5C), the MOZ
gene is fused to the TIF2 gene located at 8ql3, creating a
protein with the N-terminal part of MOZ fused to the
C-terminal part of TIF2 (242-244). TIF2 is a member of the
pl60 family of nuclear receptor co-activators known to
interact with p300 and CBP. A recent study indicates that
the MOZ gene is also rearranged in a t(2;8)(p23;pll)



translocation associated with therapy-related myelodysplastic
syndrome, but the translocation partner remains to be
identified (245).

The sequence similarity between MOZ and MORF suggests
that the MORF gene is rearranged in a manner similar to the
MOZ gene (45). Indeed, the MORF gene was recently found to
be rearranged and fused to the CBP gene in a recurrent
t(10;16)(q22;p13) translocation associated with acute myeloid
leukemia (Fig. 5A and C) (246,247). A slightly different
t(10;16)(q22;p13) translocation, associated with therapy-
related myelodysplastic syndrome, also leads to fusion of
the MORF gene to the CBP gene (247). The resulting MORF-
CBP fusion proteins are structurally similar to the MOZ-CBP
and MOZ-p300 fusion proteins described above.

All of the above chromosomal abnormalities suggest that
aberrant acetylation by mistargeted HATs plays a causative
role in leukemogenesis. Indeed, one MLL-CBP fusion protein
has been analyzed in mice and found to generate a
myelodysplastic syndrome that evolves into myeloid leukemia
(248). The bromodomain and HAT domain of CBP are the
only modules needed for the leukemogenic activity, suggest-
ing that the N-terminal part of MLL directs the two CBP
domains for aberrant acetylation and subsequently leads to
leukemogenesis. MLL is processed by Taspase 1 cleavage and
the resulting N- and C-terminal fragments remain associated
within the same histone methyltransferase complex (Fig. 5C)
(249). It is unclear whether the MLL-CBP fusion proteins are
still able to bind the processed C-terminal fragment of MLL.
Potential targets of MLL-CBP are members of the HOX gene
family (250,251), so MLL-CBP may lead to abnormal
expression of these genes and cause the subsequent
development of leukemia (Fig. 6A).

A MOZ-CBP fusion protein from t(11;16)(q23;p13) has
been characterized (161). This fusion protein inhibits Runx1-
dependent transcription and blocks the differentiation of
murine myeloid M1 cells to macrophages. Moreover, the HAT
domain of CBP appears to be important for the repressive
activities. Two slightly different MOZ-TIF2 fusion proteins
from inv(8)(pl1ql3) chromosomal inversions have recently
been shown to display oncogenic potential in both in vitro
transformation and in vivo transplant assays (118). The C,HC
zinc finger of MOZ (Fig. 2) is essential, whereas its acetyl-
CoA-binding motif only modulates the penetrance and
phenotype of the resulting diseases. For TIF2, only its CBP-
interacting domain is essential, so the recruitment of CBP to
MOZ is responsible for leukemogenesis. This finding suggests
that the underlying molecular mechanism is very similar to
that used by MOZ-CBP. Therefore, both MOZ-CBP and
MOZ-TIF2 may repress Runxl-dependent gene expression
and cause the development of leukemia (Fig. 6B). Although
both MLL-CBP and MOZ-CBP are leukemogenic, their
mechanisms of action are quite different, with the former
being an activator and the latter functioning as a repressor
(Fig. 6).

CONCLUDING REMARKS

As a common post-translational modification, lysine acetyl-
ation is known to occur not only at the N-terminal tails of core
histones but also within other eukaryotic proteins, including
about 40 transcription factors, a chromatin remodeler, one
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Figure 6. Models explaining how aberrant HATs may lead to leukemo-
genesis. (A) In normal hematopoietic cells (left), Polycomb group (PcG)
proteins repress the expression of HOX genes such as Hox7a and Hox9a,
whereas the histone methyltransferase MLL relieves the repression to main-
tain suitable expression levels when and where it is necessary. The
t(11;16)(q23;p13) translocations (Fig. 5) produce MLL-CBP fusion proteins.
Unlike wild-type MLL, these fusion proteins cause aberrant acetylation at
the HOX loci, which in turn up-regulates the expression of HOX genes and
causes the subsequent development of leukemia (middle). A similar
mechanism may apply to MLL-p300 fusion proteins derived from the
t(11;22)(q23;q13) translocations (Fig. 5). Therefore, inhibitors of p300 and
CBP may be of therapeutic value for the treatment of related leukemia
(right). (B) In normal hematopoietic cells (left), MOZ functions as a tran-
scriptional co-activator to potentiate Runx1-dependent gene expression and
stimulate cell differentiation. The t(8;16)(p11;p13) translocations (Fig. 5)
lead to the production of MOZ-CBP fusion proteins. Unlike wild-type
MOZ, these fusion proteins down-modulate Runx1-dependent gene expres-
sion and thus lead to leukemogenesis (middle). A similar mechanism may
operate with other chromosomal abnormalities with aberrant MOZ and
MORF genes. Inhibitors of the HATSs involved may be of therapeutic value
for the treatment of related leukemia (right).

DNA replication factor, three DNA metabolic enzymes, a
signaling regulator and a cytoskeletal protein (Table 1). In
addition, viral proteins are also Nt-acetylated. Most of these
proteins are nuclear, so it will be interesting to examine
whether lysine acetylation plays a wider role in the cytoplasm.
Intriguingly, this modification has been found in at least three
bacterial proteins (Table 1), so it is not just unique to
eukaryotic and viral proteins. Consistent with the wide
spectrum of substrates, a highly diverse superfamily of
LATs has been identified (Table 2). However, enzymes
responsible for the acetylation of o-tubulin, Alba and acetyl-
CoA synthetase remain elusive. Most known acetyltrans-
ferases are catalytic subunits of multiprotein complexes. With
distinct sets of subunits, one acetyltransferase can be the
catalytic subunit of different complexes, thereby adding
another level of diversity. Biochemical and molecular
approaches have been and will continue to be fruitful in
analyzing the function and regulation of acetyltransferase
complexes (6). To understand how lysine acetylation regulates
different cellular processes in vivo, genetic analysis has been
invaluable to distinguish between functional differences of
homologous HATSs. Gene targeting in mice has revealed that
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GCNSL but not PCAF is essential in early embryonic
development and that p300 and CBP play distinct roles in
hematopoeisis  (228,230,252,253). Therefore, such an
approach shall continue to yield novel insights into the
biological function as well as the spatial and temporal
regulation of these and other LATs.

As for molecular mechanisms by which lysine acetylation
exerts its effects, one major advance made in the past few
years is the discovery that bromodomains are able to recognize
acetylated lysine residues (210-216). Many proteins possess
such modules (254,255), so one interesting question is
whether all bromodomains have such an ability. If so, one
major challenge would be to determine the binding specificity
of different bromodomains. Degenerate peptide libraries have
been successfully used to determine the binding specificity of
structural modules involved in cytoplasmic signaling (256).
Similar strategies should be valuable for establishing the
binding specificity of different chromodomains and under-
standing their functions in recognizing specific acetylation
signals.

The genes for CBP, p300, MOZ and MOREF are rearranged
by leukemia-associated chromosomal abnormalities (Fig. 5).
Some of the resulting fusion proteins have been shown to be
leukemogenic (118,161,248). TIP60 has been implicated in
the development of prostate cancer (223) and it also interacts
with and modulates the function of the cytoplasmic domain of
APP, an important regulator of Alzheimer’s disease (154,156—
158). Expanded polyglutamine tracks, a root cause of
Huntington and other polyglutamine diseases, target the
acetyltransferase activity of CBP (257-260). In addition,
lysine acetylation affects the important roles that various
proteins play in other human diseases (Tables 1 and 2). For
example, acetylation of HIV Tat is an essential regulatory step
for virus production. Therefore, LATs play important roles in
the pathogenesis of leukemia (Figs 5 and 6) and other diseases.

Small molecule inhibitors and activators of histone
deacetylases have been extensively explored for the treatment
of cancer and other human diseases (17,261,262). The direct
involvement of LATs in leukemia and other diseases suggests
that small molecules able to modulate their enzymatic
activities should be of therapeutic potential. In contrast to
histone deacetylase inhibitors, only a few small molecules
have been shown to modulate the activity of HATSs (263-265).
Model organisms such as S.cerevisiae possess various HAT
orthologs (Figs 1 and 2) and may be used to screen for cell-
permeable compounds using similar assays to those described
for histone deacetylases (266,267). The resulting compounds
will yield lead structures for further optimization with iterative
rounds of structure-based molecular design and chemical
synthesis. Therefore, studies of the fundamental process of
lysine acetylation will not only yield important further insights
into how post-translational modifications regulate various
cellular processes, but also shed new light on the development
of novel therapeutic means for the treatment of leukemia and
other human diseases.
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